Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 35

Answer

(a) Increasing on $(-\infty, 1)\cup(3, \infty)$ Decreasing on $(1, 2)\cup(2, 3)$ (b) No absolute maximum. Local maximum: $(1,2)$ No absolute minimum. Local minimum: $(3,6)$

Work Step by Step

$f$ is defined everywhere except $x=2.$ $f'(x)=\displaystyle \frac{2x(x-2)-(x^{2}-3)(1)}{(x-2)^{2}}=\frac{x^{2}-4x+3}{(x-2)^{2}}$ $f'(x)= \displaystyle \frac{(x-3)(x-1)}{(x-2)^{2}}$ Which is undefined at $ x=2$: not a critical point (not in the domain). $f'(x)=0$ for $x=1,\ 3$: critical points. $f(1)=2,\quad f(3)=6$ Using testpoints in the intervals between critical points, $f'(0)=0.75 \gt 0$ $f'(1.5)=-3\lt 0$ $f'(2.5)=-3\lt 0$ $f'(4)=0.75 \gt 0$ Tabular view: $\begin{array}{l} f':\\ \\ \\ f: \end{array} \begin{array}{cccccccc} -\infty & & 1 & & 2 & & 3 & & \infty\\ ( & ++ & & -- & )( & -- & | & ++ & )\\ & & & & & & & & \\ & \nearrow & 2 & \searrow & )( & \searrow & & \nearrow & \\ & & & & & & 6 & & \\ & & & & & & & & \end{array} $ (a) Increasing on $(-\infty, 1)\cup(3, \infty)$ Decreasing on $(1, 2)\cup(2, 3)$ (b) No absolute maximum. Local maximum: $(1,2)$ No absolute minimum. Local minimum: $(3,6)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.