Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 29

Answer

(a) Increasing on $(-\infty, -1)\cup(0,1)$ Decreasing on $(-1,0)\cup(1, \infty)$ (b) No absolute maximum. Local maxima: $(-1,0.5),\ (1,0.5)$ No absolute minimum. Local minimum: $(0,0)$

Work Step by Step

$H(t) $is defined everywhere. $H'(t)=6t^{3}-6t^{5}=6t^{3}(1-t^{2})$ $H'(0)=0$ for $x=-1,0$ and $ 1\quad$... critical points. $H(-1)=0.5,\qquad H(0)=0,\qquad H(1)=0.5$ The end behavior of a polynomial is dictated by the leading term $(-t^{6})$, so $ H(t)\rightarrow -\infty$ on the far left and $ H(t)\rightarrow -\infty$ on the far right. Using testpoints in the intervals between critical points, $H'(-1)=144 \gt 0$ $H'(0.5)=-0.5625\lt 0$ $H'(1.5)=+0.5625 \gt 0$ $H'(3)=-144 \lt 0$ Tabular view: $\begin{array}{l} H':\\ \\ \\ H: \end{array} \begin{array}{lllllllll} -\infty & & -1 & & 0 & & 1 & & \infty\\ ( & -- & | & ++ & | & -- & | & ++ & )\\ & & & & & & & & \\ & \nearrow & 0.5 & \searrow & & \nearrow & 0.5 & \searrow & \\ -\infty & & & & 0 & & & & -\infty\\ & & & & & & & & \end{array}$ (a) Increasing on $(-\infty, -1)\cup(0,1)$ Decreasing on $(-1,0)\cup(1, \infty)$ (b) No absolute maximum. Local maxima: $(-1,0.5),\ (1,0.5)$ No absolute minimum. Local minimum: $(0,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.