Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 22

Answer

(a) Increasing on $(-\infty,-\sqrt{3}) \cup(\sqrt{3},\infty)$ Decreasing on $(-\sqrt{3}, \sqrt{3})$ (b) No absolute maximum. Local maximum at $(-\sqrt{3},12\sqrt{3})$. No absolute minimum. Local minimum at $(\sqrt{3},-12\sqrt{3})$.

Work Step by Step

$h $ is defined everywhere. $ h'(x)=6x^{2}-18=6(x^{2}-3),\quad$ defined everywhere. $h'(x)=0$ for $x=\pm\sqrt{3}$ Critical points at $x=\pm\sqrt{3}$ Calculate $g'$ at test points in the intervals created by the critical points: $(-\infty, -\sqrt{3}),\qquad h'(-2)=+2$, $(-\sqrt{3},\sqrt{3}),\qquad h'(0)=-18$, $(\sqrt{3}, \infty),\qquad h'(2)=-2$, Evaluate $h$ at the critical point; observe the behavior at the far ends of the graph $\displaystyle \lim_{x\rightarrow-\infty}h(x)=-\infty,\quad $ $h(-\sqrt{3})=12\sqrt{3},\quad $ $ h(\sqrt{3})=-12\sqrt{3}\quad$ $\displaystyle \lim_{t\rightarrow\infty}h(x)=+\infty$ Tabular view: $ \begin{array}{l} h':\\ \\ \\ h:\\ \end{array} \quad \begin{array}{ccccccccccc} -\infty& &-\sqrt{3} & &\sqrt{3}& &\infty \\ {(} &-- &| &++ &| & -- &) \\ \hline &\nearrow & 12\sqrt{3} & \searrow & & \nearrow & (+\infty) \\ (-\infty)& & & & -12\sqrt{3} & & \end{array}$ (a) Increasing on $(-\infty,-\sqrt{3}) \cup(\sqrt{3},\infty)$ Decreasing on $(-\sqrt{3}, \sqrt{3})$ (b) No absolute maximum. Local maximum at $(-\sqrt{3},12\sqrt{3})$. No absolute minimum. Local minimum at $(\sqrt{3},-12\sqrt{3})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.