Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 8

Answer

$ a.\quad$ critical points at $x=-4,-1,2,3$ $b.\quad $f is increasing on $(-\infty, -4)\cup(-1,2)\cup(3, \infty)$, decreasing on $(-4,-1)$. $ c.\quad$ local maxima at $x=-4$ and $x=2$

Work Step by Step

$(a)$ $f'$ is defined everywhere except at $x=-1,3\qquad $... critical points $f'(x)=0$ for $x=-4,2\qquad $... critical points Critical points at $x=-4,-1,2,3$ $(b)$ $\left[\begin{array}{cccccc} & (-\infty,-4) & (-4,-1) & (-1,2) & (2,3) & (3,\infty)\\ \text{test point} & -5 & -2 & 0 & 2.5 & 4\\ \text{evaluate }f' & 0.2188 & -1.6 & 2.667 & -1.857 & 3.2\\ \text{sign of }f' & + & - & + & - & +\\ \text{behavior of }f(x) & \nearrow & \searrow_{....} & {}_{...}\nearrow & \searrow_{...} & {}_{...}\nearrow\\ & & & & & \end{array}\right]$ (the "$\searrow_{....},\ {}_{...}\nearrow$" indicate that $f'$ is undefined the border ) f is increasing on $(-\infty, -4)\cup(-1,2)\cup(3, \infty)$, decreasing on $(-4,-1)$. $(c)$ From the table, we see that f has a local maxima at $x=-4$ and $x=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.