Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 38

Answer

(a) Increasing on $(-\infty, -2)\cup(0, \infty)$ Decreasing on $ (-2, 0)$ (b) No absolute maximum. Local maximum: $(-2, 3\sqrt[3]{4})$ No absolute minimum. Local minimum: $(0,0).$

Work Step by Step

$g(x)=x^{5/3}+5x^{2/3}$ $g$ is defined everywhere $g'(x)=\displaystyle \frac{5}{3}x^{2/3}+ \displaystyle \frac{10}{3}x^{-1/3}=\frac{5}{3x^{1/3}}(x+2)$ $g'$ not defined at $ x=0$: critical point. $g'(x)=0$ for $x=-2$: critical point. $ g(-2)=3\sqrt[3]{4}\approx 4.76 \qquad g(0)=0.$ Using testpoints in the intervals between critical points, $g'(-8)=5 \gt 0$ $g'(-1)=-1.667... \lt 0$ $g'(8)=8.333... \gt 0$ Tabular view: $\begin{array}{l} g':\\ \\ \\ g: \end{array} \begin{array}{lllllll} -\infty & & -2 & & 0 & & \infty\\ ( & ++ & | & -- & )( & ++ & )\\ & & & & & & \\ & \nearrow & 3\sqrt[3]{4} & \searrow & & \nearrow & \\ & & & & 0 & & \\ & & & & & & \end{array} $ (a) Increasing on $(-\infty, -2)\cup(0, \infty)$ Decreasing on $ (-2, 0)$ (b) No absolute maximum. Local maximum: $(-2, 3\sqrt[3]{4})$ No absolute minimum. Local minimum: $(0,0).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.