Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 32

Answer

(a) Increasing on $(0,1)$. Decreasing on $(1,\infty)$ (b) Absolute maximum: $(1,6)$. No other local maxima. No absolute minimum. Local minimum $(0,3)$

Work Step by Step

$g$ is defined on $[0,\infty)$. $g'(x)=4\displaystyle \cdot\frac{1}{2}x^{-1/2}-2x=2x^{-1/2}(1-x^{3/2})=\frac{2(1-x^{3/2})}{\sqrt{x}}$ which is not defined at $ x=0\qquad$: critical point. $g'(0)=0$ for $x=1 \quad$: critical point. $g(0)=3,\qquad g(1)=6$ Use testpoints in the intervals between critical points, $g'(\displaystyle \frac{1}{4})=\frac{79}{16} \gt 0$ $g'(4)=-5 \lt 0$ Create a table using the above: $\begin{array}{l} g':\\ \\ \\ g: \end{array} \begin{array}{lllll} 0 & & 1 & & \infty\\ {[} & ++ & | & -- & )\\ & & & & \\ & \nearrow & 6 & \searrow & \\ 3 & & & & \\ & & & & \end{array}$ (a) Increasing on $(0,1)$. Decreasing on $(1,\infty)$ (b) Absolute maximum: $(1,6)$. No other local maxima. No absolute minimum. Local minimum $(0,3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.