Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 30

Answer

(a) Increasing on $(-3,0)\cup(0,3)$ Decreasing on $(-\infty, -3)\cup(3, \infty)$ (b) No absolute maximum. Local maximum: $(3,162),\ $ No absolute minimum. Local minimum: $(-3,-162)$

Work Step by Step

$K(t) $is defined everywhere. $K'(t)=45t^{2}-5t^{4}=5t^{2}(9-t^{2})$ $K'(0)=0$ for $x=-3,0$ and $ 3\quad$... critical points. $K(-3)=-162,\qquad K(0)=0,\qquad K(3)=162$ The end behavior of a polynomial is dictated by the leading term $(-t^{5})$, so $ K(t)\rightarrow +\infty$ on the far left and $ K(t)\rightarrow -\infty$ on the far right. Using testpoints in the intervals between critical points, $K'(-4)=-560 \lt 0$ $K'(-1)=40\gt 0$ $K'(1)=40 \gt 0$ $K'(4)=-560 \lt 0$ Tabular view: $\begin{array}{l} K':\\ \\ \\ K: \end{array} \begin{array}{lllllllll} -\infty & & -3 & & 0 & & 3 & & \infty\\ ( & -- & | & ++ & | & ++ & | & -- & )\\ & & & & & & & & \\ +\infty & \searrow & & \nearrow & & \nearrow & 162 & \searrow & \\ & & -162 & & 0 & & & & -\infty\\ & & & & & & & & \end{array}$ (a) Increasing on $(-3,0)\cup(0,3)$ Decreasing on $(-\infty, -3)\cup(3, \infty)$ (b) No absolute maximum. Local maximum: $(3,162),\ $ No absolute minimum. Local minimum: $(-3,-162)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.