Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 5

Answer

$ a.\quad$ critical points at $x=-2, 1$ and $3$. $b.\quad $increasing on $(-2,1)\cup(3, \infty)$, decreasing on $(-\infty, -2)\cup(1,3)$. $ c.\quad$ a local maximum at $x=1$ and local minima at $x=-2$ and at $x=3$

Work Step by Step

$(a)$ $f'$ is defined everywhere. $f'(x)=0$ for $x=1,-2,3\qquad $... critical points at $x=-2, 1$ and $3$. $(b)$ $\left[\begin{array}{lllll} & (-\infty,-2) & (-2,1) & (1,3) & (3,\infty)\\ \text{test point} & -3 & 0 & 2 & 4\\ \text{evaluate }f' & -24 & 6 & -4 & 18\\ \text{sign of }f' & - & + & - & +\\ \text{behavior of }f(x) & \searrow & \nearrow & \searrow & \nearrow \end{array}\right]$ f is increasing on $(-2,1)\cup(3, \infty)$, decreasing on $(-\infty, -2)\cup(1,3)$. $(c)$ From the table, we see that f has: - a local maximum at $x=1$ and - local minima at $x=-2$ and at $x=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.