Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 10

Answer

$ a.\quad$ critical points at $x=0$ and $x=4$ $b.\quad $f is increasing on $ (4, \infty)$, decreasing on $(0,4)$. $ c.\quad$ local maximum at $x=4$

Work Step by Step

$(a)$ $f'(x)=3-\displaystyle \frac{6}{\sqrt{x}}=\frac{3\sqrt{x}-6}{\sqrt{x}}=\frac{3(\sqrt{x}-2)}{\sqrt{x}}$ $f'$ is not defined at $x=0\qquad $... critical point $f'(x)=0$ for $x=4\qquad $... critical point Critical points at $x=0$ and $x=4$ $(b)$ $\left[\begin{array}{ccccc} & & (0,4) & (4,\infty)\\ \text{test point, }t & & 1 & 5\\ \text{evaluate }f'(t) & & -3 & 0.317 \end{array}\right]$ $f':\quad \stackrel{0}{(} \stackrel{\searrow}{- - -} \stackrel{4}{|}$ $\stackrel{\nearrow}{+++}$ f is increasing on $ (4, \infty)$, decreasing on $(0,4)$. $(c)$ From the table, we see that f has: a local minimum at $x=4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.