Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 4

Answer

$ a.\quad$ critical points at $x=-2$ and $x=1$. $b.\quad $increasing on $(-\infty, -2)\cup(-2,1)\cup(1, \infty)$, never decreasing. $ c.\quad$ no local extrema

Work Step by Step

$(a)$ $f'$ is defined everywhere. $f'(x)=0$ for $x=1,-2\qquad $... critical points at $x=-2$ and $x=1$. $(b)$ $\left[\begin{array}{ccccccc} & -\infty & & -2 & & 1 & & \infty\\ \text{test point} & & -3 & | & 0 & | & 2 & \\ \text{evaluate }f' & & (-4)^{2}(-1)^{2} & | & (-1)^{2}(2)^{2} & | & (2)^{2}(4)^2 & \\ \text{sign of }f' & & + & | & + & | & + & \\ \text{behavior of }f(x) & & \nearrow & & \nearrow & & \nearrow & \end{array}\right]$ f is increasing on $(-\infty, -2)\cup(-2,1)\cup(1, \infty)$, never decreasing. $(c)$ From the table, we see that f has no local extrema.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.