Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 9

Answer

$$\frac{{{e^3} - e - {e^{ - 1}} + {e^{ - 3}}}}{2}$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^1 {\int_{y - 1}^{y + 1} {{e^{x + y}}} dxdy} \cr & {\text{Recall that }}{e^a}{e^b} = {e^{a + b}} \cr & \int_{ - 1}^1 {\int_{y - 1}^{y + 1} {{e^x}{e^y}} dxdy} \cr & \int_{ - 1}^1 {{e^y}\int_{y - 1}^{y + 1} {{e^x}} dxdy} \cr & \int_{ - 1}^1 {{e^y}\left[ {\int_{y - 1}^{y + 1} {{e^x}} dx} \right]dy} \cr & {\text{Evaluate the inner integral}} \cr & \int_{y - 1}^{y + 1} {{e^x}} dx = \left[ {{e^x}} \right]_{x = y - 1}^{x = y + 1} \cr & = {e^{y + 1}} - {e^{y - 1}} \cr & {\text{Therefore,}} \cr & \int_{ - 1}^1 {{e^y}\left[ {\int_{y - 1}^{y + 1} {{e^x}} dx} \right]dy} \cr & = \int_{ - 1}^1 {{e^y}\left( {{e^{y + 1}} - {e^{y - 1}}} \right)dy} \cr & = \int_{ - 1}^1 {\left( {{e^{2y + 1}} - {e^{2y - 1}}} \right)dy} \cr & {\text{Integrating}} \cr & = \left[ {\frac{1}{2}{e^{2y + 1}} - \frac{1}{2}{e^{2y - 1}}} \right]_{ - 1}^1 \cr & = \left[ {\left( {\frac{1}{2}{e^{2\left( 1 \right) + 1}} - \frac{1}{2}{e^{2\left( 1 \right) - 1}}} \right) - \left( {\frac{1}{2}{e^{2\left( { - 1} \right) + 1}} - \frac{1}{2}{e^{2\left( { - 1} \right) - 1}}} \right)} \right] \cr & = \left[ {\frac{1}{2}{e^3} - \frac{1}{2}{e^1}} \right] - \left[ {\frac{1}{2}{e^{ - 1}} - \frac{1}{2}{e^{ - 3}}} \right] \cr & = \frac{1}{2}{e^3} - \frac{1}{2}e - \frac{1}{2}{e^{ - 1}} + \frac{1}{2}{e^{ - 3}} \cr & = \frac{{{e^3} - e - {e^{ - 1}} + {e^{ - 3}}}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.