Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 28

Answer

\[\overline{f}=0\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):0\le x\le 1-{{y}^{2}},\text{ }-1\le y\le 1\text{ } \right\} \\ & \text{The area of the region is } \\ & A=\int_{-1}^{1}{\left( 1-{{y}^{2}} \right)}dy \\ & A=\frac{4}{3} \\ & \text{The average of }f(x,y)\text{ on the region }R\text{ is} \\ & \overline{f}=\frac{1}{A}\iint_{R}{f\left( x,y \right)}dA \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\int_{0}^{1-{{y}^{2}}}{y}dx}dy \\ & \text{Integrate} \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\left[ xy \right]_{0}^{1-{{y}^{2}}}}dy \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\left[ \left( 1-{{y}^{2}} \right)y \right]}dy \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\left( y-{{y}^{3}} \right)}dy \\ & \overline{f}=\frac{3}{4}\left[ \frac{1}{2}{{y}^{2}}-\frac{1}{4}{{y}^{4}} \right]_{-1}^{1} \\ & \overline{f}=\frac{3}{4}\left[ \frac{1}{2}{{\left( 1 \right)}^{2}}-\frac{1}{4}{{\left( 1 \right)}^{4}} \right]-\frac{3}{4}\left[ \frac{1}{2}{{\left( -1 \right)}^{2}}-\frac{1}{4}{{\left( -1 \right)}^{4}} \right] \\ & \overline{f}=\frac{3}{4}\left( \frac{3}{16} \right)-\frac{3}{4}\left( \frac{3}{16} \right) \\ & \overline{f}=0 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.