Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 10

Answer

$$\frac{{16 - 8\sqrt 2 }}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_y^{y + 2} {\frac{1}{{\sqrt {x + y} }}} dxdy} \cr & \int_0^1 {\left[ {\int_y^{y + 2} {\frac{1}{{\sqrt {x + y} }}} dx} \right]dy} \cr & {\text{Evaluate the inner integral}} \cr & \int_y^{y + 2} {\frac{1}{{\sqrt {x + y} }}} dx = \int_y^{y + 2} {{{\left( {x + y} \right)}^{ - 1/2}}} dx \cr & = \left[ {\frac{{{{\left( {x + y} \right)}^{1/2}}}}{{1/2}}} \right]_{x = y}^{x = y + 2} \cr & = 2\left[ {\sqrt {x + y} } \right]_{x = y}^{x = y + 2} \cr & = 2\left[ {\sqrt {y + 2 + y} - \sqrt {y + y} } \right] \cr & = 2\left[ {\sqrt {2y + 2} - \sqrt {2y} } \right] \cr & = 2\sqrt {2y + 2} - 2\sqrt {2y} \cr & {\text{Therefore,}} \cr & \int_0^1 {\left[ {\int_y^{y + 2} {\frac{1}{{\sqrt {x + y} }}} dx} \right]dy} \cr & = \int_0^1 {\left( {2\sqrt {2y + 2} - 2\sqrt {2y} } \right)} \cr & {\text{Integrating}} \cr & = \left[ {\frac{{{{\left( {2y + 2} \right)}^{3/2}}}}{{3/2}} - \frac{{{{\left( {2y} \right)}^{3/2}}}}{{3/2}}} \right]_0^1 \cr & = \frac{2}{3}\left[ {{{\left( {2y + 2} \right)}^{3/2}} - {{\left( {2y} \right)}^{3/2}}} \right]_0^1 \cr & = \frac{2}{3}\left[ {{{\left( {2\left( 1 \right) + 2} \right)}^{3/2}} - {{\left( {2\left( 1 \right)} \right)}^{3/2}}} \right] - \frac{2}{3}\left[ {{{\left( {2\left( 0 \right) + 2} \right)}^{3/2}} - {{\left( {2\left( 0 \right)} \right)}^{3/2}}} \right] \cr & = \frac{2}{3}\left( {{4^{3/2}}} \right) - \frac{2}{3}\left( {{2^{3/2}}} \right) - \frac{2}{3}\left( {{2^{3/2}}} \right) \cr & = \frac{{16}}{3} - \frac{4}{3}\left( {2\sqrt 2 } \right) \cr & = \frac{{16 - 8\sqrt 2 }}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.