Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 8

Answer

$$\frac{2}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{2 - y} y dxdy} \cr & \int_0^1 {\left[ {\int_0^{2 - y} y dx} \right]dy} \cr & \int_0^1 {y\left[ {\int_0^{2 - y} {dx} } \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^{2 - y} {dx} = \left[ x \right]_{x = 0}^{x = 2 - y} \cr & = 2 - y \cr & {\text{Therefore,}} \cr & \int_0^1 {y\left[ {\int_0^{2 - y} {dx} } \right]dy} = \int_0^1 {y\left( {2 - y} \right)dy} \cr & = \int_0^1 {\left( {2y - {y^2}} \right)dy} \cr & {\text{Integrating}} \cr & = \left[ {{y^2} - \frac{1}{3}{y^3}} \right]_0^1 \cr & = \left[ {{{\left( 1 \right)}^2} - \frac{1}{3}{{\left( 1 \right)}^3}} \right] - \left[ {{{\left( 0 \right)}^2} - \frac{1}{3}{{\left( 0 \right)}^3}} \right] \cr & = 1 - \frac{1}{3} \cr & = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.