Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 23

Answer

\[\frac{2}{3}\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ in the quadrant I} \\ & \text{as:} \\ & R=\left\{ \left( x,y \right):0\le y\le 1-x,\text{ }0\le x\le 1\text{ } \right\} \\ & \text{Then, by symmetry of }z={{x}^{2}}+{{y}^{2}} \\ & \iint_{R}{f\left( x,y \right)}=4\int_{0}^{1}{\int_{0}^{1-x}{\left( {{x}^{2}}+{{y}^{2}} \right)}dydx} \\ & \text{Integrating} \\ & =4\int_{0}^{1}{\left[ {{x}^{2}}y+\frac{1}{3}{{y}^{3}} \right]_{0}^{1-x}dx} \\ & =4\int_{0}^{1}{\left[ {{x}^{2}}\left( 1-x \right)+\frac{1}{3}{{\left( 1-x \right)}^{3}} \right]dx} \\ & =4\int_{0}^{1}{\left[ {{x}^{2}}-{{x}^{3}}-\frac{1}{3}{{\left( 1-x \right)}^{3}}\left( -1 \right) \right]dx} \\ & =4\left[ \frac{1}{3}{{x}^{3}}-\frac{1}{4}{{x}^{4}}-\frac{1}{12}{{\left( 1-x \right)}^{4}} \right]_{0}^{1} \\ & =4\left[ \frac{1}{3}{{\left( 1 \right)}^{3}}-\frac{1}{4}{{\left( 1 \right)}^{4}}-\frac{1}{12}{{\left( 1-1 \right)}^{4}} \right]-4\left[ 0-0-\frac{1}{12}{{\left( 1-0 \right)}^{4}} \right] \\ & =\frac{1}{3}+\frac{1}{3} \\ & =\frac{2}{3} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.