Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 6

Answer

$$e + \frac{1}{e} - 2$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^1 {{e^{x - y}}} dxdy} \cr & {\text{Recall that }}{e^a}{e^b} = {e^{a + b}} \cr & \int_0^1 {\int_0^1 {{e^x}{e^{ - y}}} dxdy} \cr & \int_0^1 {{e^{ - y}}\left[ {\int_0^1 {{e^x}} dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^1 {{e^x}} dx = \left[ {{e^x}} \right]_{x = 0}^{x = 1} \cr & = {e^1} - {e^0} \cr & = e - 1 \cr & {\text{Therefore,}} \cr & \int_0^1 {{e^{ - y}}\left[ {\int_0^1 {{e^x}} dx} \right]dy} = \int_0^1 {{e^{ - y}}\left( {e - 1} \right)dy} \cr & = \left( {e - 1} \right)\int_0^1 {{e^{ - y}}dy} \cr & {\text{Integrating}} \cr & = \left( {e - 1} \right)\left[ { - {e^{ - y}}} \right]_0^1 \cr & = \left( {e - 1} \right)\left[ { - {e^{ - 1}} + {e^0}} \right] \cr & = \left( {e - 1} \right)\left( { - \frac{1}{e} + 1} \right) \cr & = - 1 + e + \frac{1}{e} - 1 \cr & = e + \frac{1}{e} - 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.