Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 25

Answer

\[\frac{2}{3}\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):0\le y\le -x+2,\text{ }0\le x\le 2\text{ } \right\} \\ & \text{The area of the region is }A=\frac{1}{2}\left( 2 \right)\left( 2 \right)=2 \\ & \text{The average of }f(x,y)\text{ on the region }R\text{ is} \\ & \overline{f}=\frac{1}{A}\iint_{R}{f\left( x,y \right)}dydx \\ & \overline{f}=\frac{1}{2}\int_{0}^{2}{\int_{0}^{2-x}{y}dy}dx \\ & \text{Integrate} \\ & \overline{f}=\frac{1}{2}\int_{0}^{2}{\left[ \frac{1}{2}{{y}^{2}} \right]_{0}^{2-x}}dx \\ & \overline{f}=\frac{1}{4}\int_{0}^{2}{{{\left( 2-x \right)}^{2}}}dx \\ & \overline{f}=-\frac{1}{4}\left[ \frac{{{\left( 2-x \right)}^{3}}}{3} \right]_{0}^{2} \\ & \overline{f}=-\frac{1}{4}\left[ \frac{{{\left( 2-2 \right)}^{3}}}{3}-\frac{{{\left( 2-0 \right)}^{3}}}{3} \right] \\ & \overline{f}=\frac{2}{3} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.