Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 1

Answer

$$ - \frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^1 {\left( {x - 2y} \right)} dxdy} \cr & \int_0^1 {\left[ {\int_0^1 {\left( {x - 2y} \right)} dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^1 {\left( {x - 2y} \right)} dx = \left[ {\frac{{{x^2}}}{2} - 2xy} \right]_{x = 0}^{x = 1} \cr & = \left[ {\left( {\frac{{{{\left( 1 \right)}^2}}}{2} - 2\left( 1 \right)y} \right) - \left( {\frac{{{{\left( 0 \right)}^2}}}{2} - 2\left( 0 \right)y} \right)} \right] \cr & = \frac{1}{2} - 2y \cr & {\text{Therefore,}} \cr & \int_0^1 {\int_0^1 {\left( {x - 2y} \right)} dxdy} = \int_0^1 {\left( {\frac{1}{2} - 2y} \right)dy} \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {\frac{1}{2}y - {y^2}} \right]_0^1 \cr & = \left[ {\frac{1}{2}\left( 1 \right) - {{\left( 1 \right)}^2}} \right] - \left[ {\frac{1}{2}\left( 0 \right) - {{\left( 0 \right)}^2}} \right] \cr & = - \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.