Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 22

Answer

\[\frac{2}{15}\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):0\le x\le \sqrt{1-{{y}^{2}}},\text{ }-1\le y\le 1\text{ } \right\} \\ & \text{Then,} \\ & \iint_{R}{f\left( x,y \right)}=\int_{-1}^{1}{\int_{0}^{\sqrt{1-{{y}^{2}}}}{x{{y}^{2}}}dxdy} \\ & \text{Integrating} \\ & =\int_{-1}^{1}{\left[ \frac{{{x}^{2}}{{y}^{2}}}{2} \right]_{0}^{\sqrt{1-{{y}^{2}}}}dy} \\ & =\int_{-1}^{1}{\left[ \frac{{{\left( \sqrt{1-{{y}^{2}}} \right)}^{2}}{{y}^{2}}}{2}-\frac{{{\left( 0 \right)}^{2}}{{y}^{2}}}{2} \right]dy} \\ & =\int_{-1}^{1}{\left[ \frac{\left( 1-{{y}^{2}} \right){{y}^{2}}}{2} \right]dy} \\ & =\int_{-1}^{1}{\left( \frac{1}{2}{{y}^{2}}-\frac{1}{2}{{y}^{4}} \right)dy} \\ & =\left[ \frac{1}{6}{{y}^{3}}-\frac{1}{10}{{y}^{5}} \right]_{-1}^{1} \\ & =\left[ \frac{1}{6}{{\left( 1 \right)}^{3}}-\frac{1}{10}{{\left( 1 \right)}^{5}} \right]-\left[ \frac{1}{6}{{\left( -1 \right)}^{3}}-\frac{1}{10}{{\left( -1 \right)}^{5}} \right] \\ & =\frac{1}{15}+\frac{1}{15} \\ & =\frac{2}{15} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.