Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 15

Answer

$$\frac{{45}}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_{1 - x}^{8 - x} {{{\left( {x + y} \right)}^{1/3}}} dydx} \cr & \int_0^2 {\left[ {\int_{1 - x}^{8 - x} {{{\left( {x + y} \right)}^{1/3}}} dy} \right]dx} \cr & {\text{Evaluate inner integral}} \cr & \int_{1 - x}^{8 - x} {{{\left( {x + y} \right)}^{1/3}}} dy = \left[ {\frac{{{{\left( {x + y} \right)}^{4/3}}}}{{4/3}}} \right]_{y = 1 - x}^{y = 8 - x} \cr & = \frac{3}{4}\left[ {{{\left( {x + y} \right)}^{4/3}}} \right]_{y = 1 - x}^{y = 8 - x} \cr & = \frac{3}{4}\left[ {{{\left( {x + 8 - x} \right)}^{4/3}} - {{\left( {x + 1 - x} \right)}^{4/3}}} \right] \cr & = \frac{3}{4}\left[ {{{\left( 8 \right)}^{4/3}} - {{\left( 1 \right)}^{4/3}}} \right] \cr & = \frac{3}{4}\left( {15} \right) \cr & = \frac{{45}}{4} \cr & {\text{Therefore,}} \cr & \int_0^2 {\left[ {\int_{1 - x}^{8 - x} {{{\left( {x + y} \right)}^{1/3}}} dy} \right]dx} = \int_0^2 {\frac{{45}}{4}dx} \cr & {\text{Integrating}} \cr & {\text{ = }}\frac{{45}}{4}\left[ x \right]_0^2 \cr & = \frac{{45}}{4}\left[ {2 - 0} \right] \cr & = \frac{{45}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.