Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 2

Answer

$$8$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^1 {\int_0^2 {\left( {2x + 3y} \right)} dxdy} \cr & \int_{ - 1}^1 {\left[ {\int_0^2 {\left( {2x + 3y} \right)} dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^2 {\left( {2x + 3y} \right)} dx = \left[ {{x^2} + 3xy} \right]_{x = 0}^{x = 2} \cr & = \left[ {\left( {{{\left( 2 \right)}^2} + 3\left( 2 \right)y} \right) - \left( {{{\left( 0 \right)}^2} + 3\left( 0 \right)y} \right)} \right] \cr & = 4 + 6y \cr & {\text{Therefore,}} \cr & \int_{ - 1}^1 {\int_0^2 {\left( {2x + 3y} \right)} dxdy} = \int_{ - 1}^1 {\left( {4 + 6y} \right)dy} \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {4y + 3{y^2}} \right]_{ - 1}^1 \cr & = \left[ {4\left( 1 \right) + 3{{\left( 1 \right)}^2}} \right] - \left[ {4\left( { - 1} \right) + 3{{\left( { - 1} \right)}^2}} \right] \cr & = \left[ {4 + 3} \right] - \left[ { - 4 + 3} \right] \cr & = 8 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.