Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 14

Answer

$$\frac{1}{3}\left( {{e^2} - 1} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{{x^2}} {{e^{{x^3} + 1}}} dydx} \cr & \int_0^1 {\left[ {\int_0^{{x^2}} {{e^{{x^3} + 1}}} dy} \right]dx} \cr & \int_0^1 {{e^{{x^3} + 1}}\left[ {\int_0^{{x^2}} {dy} } \right]dx} \cr & {\text{Evaluate inner integral}} \cr & \int_0^{{x^2}} {dy} = \left[ y \right]_{y = 0}^{y = {x^2}} \cr & = {x^2} \cr & {\text{Therefore,}} \cr & \int_0^1 {{e^{{x^3} + 1}}\left[ {\int_0^{{x^2}} {dy} } \right]dx} = \int_0^1 {{e^{{x^3} + 1}}\left( {{x^2}} \right)dx} \cr & = \frac{1}{3}\int_0^1 {{e^{{x^3} + 1}}\left( {3{x^2}} \right)dx} \cr & {\text{Integrating}} \cr & {\text{ = }}\frac{1}{3}\left[ {{e^{{x^3} + 1}}} \right]_0^1 \cr & = \frac{1}{3}\left[ {{e^{{{\left( 1 \right)}^3} + 1}} - {e^{{{\left( 0 \right)}^3} + 1}}} \right] \cr & = \frac{1}{3}\left( {{e^2} - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.