Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 20

Answer

$$\frac{{e - {e^{ - 1}}}}{2}$$

Work Step by Step

$$\eqalign{ & {\text{From the digram below we have}} \cr & y = x + 1 \to x = y - 1 \cr & y = - x + 1 \to x = - y + 1 \cr & {\text{we can define the limits of integration}} \cr & y - 1 \leqslant x \leqslant - y + 1,{\text{ 0}} \leqslant y \leqslant 1 \cr & {\text{Therefore}} \cr & \int_a^b {\int_{g\left( y \right)}^{h\left( y \right)} {f\left( {x,y} \right)} dx} dy \cr & = \int_0^1 {\int_{y - 1}^{ - y + 1} {{e^{x + y}}} dx} dy \cr & = \int_0^1 {\left[ {\int_{y - 1}^{ - y + 1} {{e^{x + y}}} dx} \right]} dy \cr & {\text{Evaluate inner integral}} \cr & \int_{y - 1}^{1 - y} {{e^{x + y}}} dx = \left[ {{e^{x + y}}} \right]_{x = y - 1}^{x = - y + 1} \cr & = {e^{ - y + 1 + y}} - {e^{y - 1 + y}} \cr & = e - {e^{2y - 1}} \cr & {\text{Therefore,}} \cr & \int_0^1 {\left[ {\int_{y - 1}^{ - y + 1} {{e^{x + y}}} dx} \right]} dy \cr & = \int_0^1 {\left( {e - {e^{2y - 1}}} \right)} dy \cr & {\text{Integrating}} \cr & = \left[ {ey - \frac{1}{2}{e^{2y - 1}}} \right]_0^1 \cr & = \left[ {e\left( 1 \right) - \frac{1}{2}{e^{2\left( 1 \right) - 1}}} \right] - \left[ {e\left( 0 \right) - \frac{1}{2}{e^{2\left( 0 \right) - 1}}} \right] \cr & = \left( {e - \frac{1}{2}e} \right) - \left( { - \frac{1}{2}{e^{ - 1}}} \right) \cr & = \frac{1}{2}e + \frac{1}{2}{e^{ - 1}} \cr & = \frac{{e - {e^{ - 1}}}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.