Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 12

Answer

$$4$$

Work Step by Step

$$\eqalign{ & \int_1^4 {\int_{ - \sqrt x }^{\sqrt x } {\frac{1}{x}} dydx} \cr & \int_1^4 {\left[ {\int_{ - \sqrt x }^{\sqrt x } {\frac{1}{x}} dy} \right]dx} \cr & \int_1^4 {\frac{1}{x}\left[ {\int_{ - \sqrt x }^{\sqrt x } {dy} } \right]dx} \cr & {\text{Evaluate inner integral}} \cr & \int_{ - \sqrt x }^{\sqrt x } {dy} = \left[ y \right]_{y = - \sqrt x }^{y = \sqrt x } \cr & = \sqrt x - \left( { - \sqrt x } \right) \cr & = 2\sqrt x \cr & {\text{Therefore,}} \cr & \int_1^4 {\frac{1}{x}\left[ {\int_{ - \sqrt x }^{\sqrt x } {dy} } \right]dx} = \int_1^4 {\frac{1}{x}\left( {2\sqrt x } \right)dx} \cr & = 2\int_1^4 {{x^{ - 1/2}}dx} \cr & {\text{Integrating}} \cr & {\text{ = 2}}\left[ {\frac{{{x^{1/2}}}}{{1/2}}} \right]_1^4 \cr & = 4\left[ {\sqrt x } \right]_1^4 \cr & = 4\left( {\sqrt 4 - \sqrt 1 } \right) \cr & = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.