Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 11

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_{ - {x^2}}^{{x^2}} x dydx} \cr & \int_0^1 {\left[ {\int_{ - {x^2}}^{{x^2}} x dy} \right]dx} \cr & \int_0^1 {x\left[ {\int_{ - {x^2}}^{{x^2}} {dy} } \right]dx} \cr & {\text{Evaluate inner integral}} \cr & \int_{ - {x^2}}^{{x^2}} {dy} = \left[ y \right]_{y = - {x^2}}^{y = {x^2}} \cr & = {x^2} - \left( { - {x^2}} \right) \cr & = 2{x^2} \cr & {\text{Therefore,}} \cr & \int_0^1 {x\left[ {\int_{ - {x^2}}^{{x^2}} {dy} } \right]dx} = \int_0^1 {x\left( {2{x^2}} \right)dx} \cr & = \int_0^1 {2{x^3}dx} \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {\frac{1}{2}{x^4}} \right]_0^1 \cr & = \frac{1}{2}\left[ {{{\left( 1 \right)}^4} - {{\left( 0 \right)}^4}} \right] \cr & = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.