Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 27

Answer

\[\overline{f}=2e-4\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):y-1\le y\le 1-y,\text{ 0}\le y\le 1\text{ } \right\} \\ & \text{The area of the region is } \\ & A=2\int_{0}^{1}{\left( -x+1 \right)}dx \\ & A=1 \\ & \text{The average of }f(x,y)\text{ on the region }R\text{ is} \\ & \overline{f}=\frac{1}{A}\iint_{R}{f\left( x,y \right)}dydx \\ & \overline{f}=\frac{1}{1}\int_{0}^{1}{\int_{y-1}^{1-y}{{{e}^{y}}}dx}dy \\ & \text{Integrate} \\ & \overline{f}=\int_{0}^{1}{\left[ x{{e}^{y}} \right]_{y-1}^{1-y}}dy \\ & \overline{f}=\int_{0}^{1}{\left[ \left( 1-y \right){{e}^{y}}-\left( y-1 \right){{e}^{y}} \right]}dy \\ & \overline{f}=\int_{0}^{1}{\left( {{e}^{y}}-y{{e}^{y}}-y{{e}^{y}}+{{e}^{y}} \right)}dy \\ & \overline{f}=\int_{0}^{1}{\left( 2{{e}^{y}}-2y{{e}^{y}} \right)}dy \\ & \text{Integrating } \\ & \overline{f}=\left[ 2{{e}^{y}}-2y{{e}^{y}}+2{{e}^{y}} \right]_{0}^{1} \\ & \overline{f}=\left[ 4{{e}^{y}}-2y{{e}^{y}} \right]_{0}^{1} \\ & \overline{f}=\left( 4e-2e \right)-\left( 4{{e}^{0}}-0 \right) \\ & \overline{f}=2e-4 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.