Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 17

Answer

$$\frac{8}{3}$$

Work Step by Step

$$\eqalign{ & y = 1 - {x^2} \cr & y = 0 \cr & 1 - {x^2} = 0 \to x = \pm 1 \cr & {\text{From the graph we can define the limits of integration}} \cr & 0 \leqslant y \leqslant 1 - {x^2},{\text{ }} - 1 \leqslant x \leqslant 1 \cr & {\text{Therefore}} \cr & \int_a^b {\int_{g\left( x \right)}^{h\left( x \right)} {f\left( {x,y} \right)} dy} dx \cr & = \int_{ - 1}^1 {\int_0^{1 - {x^2}} 2 dy} dx \cr & = \int_{ - 1}^1 {\left[ {\int_0^{1 - {x^2}} 2 dy} \right]} dx \cr & {\text{Evaluate inner integral}} \cr & \int_0^{1 - {x^2}} 2 dy = \left[ {2y} \right]_{y = 0}^{y = 1 - {x^2}} \cr & = \left[ {2\left( {1 - {x^2}} \right) - 2\left( 0 \right)} \right] \cr & = 2\left( {1 - {x^2}} \right) \cr & {\text{Therefore,}} \cr & \int_{ - 1}^1 {\left[ {\int_0^{1 - {x^2}} 2 dy} \right]} dx = \int_{ - 1}^1 {2\left( {1 - {x^2}} \right)} dx \cr & = 2\int_{ - 1}^1 {\left( {1 - {x^2}} \right)} dx \cr & {\text{Integrating}} \cr & = 2\left[ {x - \frac{1}{3}{x^3}} \right]_{ - 1}^1 \cr & = 2\left[ {1 - \frac{1}{3}{{\left( 1 \right)}^3}} \right] - 2\left[ { - 1 - \frac{1}{3}{{\left( { - 1} \right)}^3}} \right] \cr & = 2\left( {\frac{2}{3}} \right) - 2\left( { - \frac{2}{3}} \right) \cr & = \frac{8}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.