Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 7

Answer

$$\frac{7}{6}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{2 - y} x dxdy} \cr & \int_0^1 {\left[ {\int_0^{2 - y} x dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^{2 - y} x dx = \left[ {\frac{1}{2}{x^2}} \right]_{x = 0}^{x = 2 - y} \cr & = \frac{1}{2}\left[ {{{\left( {2 - y} \right)}^2} - {{\left( 0 \right)}^2}} \right] \cr & = \frac{1}{2}{\left( {2 - y} \right)^2} \cr & {\text{Therefore,}} \cr & \int_0^1 {\left[ {\int_0^{2 - y} x dx} \right]dy} = \int_0^1 {\frac{1}{2}{{\left( {2 - y} \right)}^2}dy} \cr & = - \frac{1}{2}\int_0^1 {{{\left( {2 - y} \right)}^2}\left( { - 1} \right)dy} \cr & {\text{Integrating}} \cr & = - \frac{1}{2}\left[ {\frac{{{{\left( {2 - y} \right)}^3}}}{3}} \right]_0^1 \cr & = - \frac{1}{6}\left[ {{{\left( {2 - y} \right)}^3}} \right]_0^1 \cr & = - \frac{1}{6}\left[ {{{\left( {2 - 1} \right)}^3} - {{\left( {2 - 0} \right)}^3}} \right] \cr & = - \frac{1}{6}\left[ {1 - 8} \right] \cr & = \frac{7}{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.