Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 4

Answer

$$\ln 3$$

Work Step by Step

$$\eqalign{ & \int_1^2 {\int_2^3 {\left( {\frac{1}{x} + \frac{1}{y}} \right)} dxdy} \cr & \int_1^2 {\left[ {\int_2^3 {\left( {\frac{1}{x} + \frac{1}{y}} \right)} dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_2^3 {\left( {\frac{1}{x} + \frac{1}{y}} \right)} dx = \left[ {\ln \left| x \right| + \frac{x}{y}} \right]_{x = 2}^{x = 3} \cr & = \left[ {\ln \left| 3 \right| + \frac{3}{y}} \right] - \left[ {\ln \left| 2 \right| + \frac{2}{y}} \right] \cr & = \ln \left| 3 \right| + \frac{3}{y} - \ln \left| 2 \right| - \frac{2}{y} \cr & = \ln \left( {\frac{3}{2}} \right) + \frac{1}{y} \cr & {\text{Therefore,}} \cr & \int_1^2 {\int_2^3 {\left( {\frac{1}{x} + \frac{1}{y}} \right)} dxdy} = \int_1^2 {\left[ {\ln \left( {\frac{3}{2}} \right) + \frac{1}{y}} \right]} dy \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {\ln \left( {\frac{3}{2}} \right)y + \ln \left| y \right|} \right]_1^2 \cr & = \left[ {\ln \left( {\frac{3}{2}} \right)\left( 2 \right) + \ln \left| 2 \right|} \right] - \left[ {\ln \left( {\frac{3}{2}} \right)\left( 1 \right) + \ln \left| 1 \right|} \right] \cr & = 2\ln \left( {\frac{3}{2}} \right) + \ln 2 - \ln \left( {\frac{3}{2}} \right) \cr & = \ln \left( {\frac{3}{2}} \right) + \ln 2 \cr & = \ln 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.