Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 21

Answer

\[0\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):-\sqrt{1-{{y}^{2}}}\le x\le \sqrt{1-{{y}^{2}}},\text{ }-1\le y\le 1\text{ } \right\} \\ & \text{Then,} \\ & \iint_{R}{f\left( x,y \right)}=\int_{-1}^{1}{\int_{-\sqrt{1-{{y}^{2}}}}^{\sqrt{1-{{y}^{2}}}}{x{{y}^{2}}}dxdy} \\ & \text{Integrating} \\ & =\int_{-1}^{1}{\left[ \frac{{{x}^{2}}{{y}^{2}}}{2} \right]_{-\sqrt{1-{{y}^{2}}}}^{\sqrt{1-{{y}^{2}}}}dy} \\ & =\int_{-1}^{1}{\left[ \frac{{{\left( \sqrt{1-{{y}^{2}}} \right)}^{2}}{{y}^{2}}}{2}-\frac{{{\left( -\sqrt{1-{{y}^{2}}} \right)}^{2}}{{y}^{2}}}{2} \right]dy} \\ & =\int_{-1}^{1}{\left[ \frac{\left( 1-{{y}^{2}} \right){{y}^{2}}}{2}-\frac{\left( 1-{{y}^{2}} \right){{y}^{2}}}{2} \right]dy} \\ & =\int_{-1}^{1}{0dy} \\ & =0 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.