Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 26

Answer

\[\overline{f}=2\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):0\le y\le 1-{{x}^{2}},\text{ }-1\le x\le 1\text{ } \right\} \\ & \text{The area of the region is } \\ & A=\int_{-1}^{1}{\left( 1-{{x}^{2}} \right)}dx \\ & A=\frac{4}{3} \\ & \text{The average of }f(x,y)\text{ on the region }R\text{ is} \\ & \overline{f}=\frac{1}{A}\iint_{R}{f\left( x,y \right)}dydx \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\int_{0}^{1-{{x}^{2}}}{\left( 2+x \right)}dy}dx \\ & \text{Integrate} \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\left[ \left( 2+x \right)y \right]_{0}^{1-{{x}^{2}}}}dx \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\left[ \left( 2+x \right)\left( 1-{{x}^{2}} \right) \right]}dx \\ & \overline{f}=\frac{3}{4}\int_{-1}^{1}{\left( 2-2{{x}^{2}}+x-{{x}^{3}} \right)}dx \\ & \overline{f}=\frac{3}{4}\left[ 2x-\frac{2}{3}{{x}^{3}}+\frac{1}{2}{{x}^{2}}-\frac{1}{4}{{x}^{4}} \right]_{-1}^{1} \\ & \overline{f}=\frac{3}{4}\left[ 2\left( 1 \right)-\frac{2}{3}{{\left( 1 \right)}^{3}}+\frac{1}{2}{{\left( 1 \right)}^{2}}-\frac{1}{4}{{\left( 1 \right)}^{4}} \right] \\ & -\frac{3}{4}\left[ 2\left( 1 \right)-\frac{2}{3}{{\left( 1 \right)}^{3}}+\frac{1}{2}{{\left( 1 \right)}^{2}}-\frac{1}{4}{{\left( 1 \right)}^{4}} \right] \\ & \overline{f}=\frac{19}{16}+\frac{13}{16} \\ & \overline{f}=\frac{32}{16} \\ & \overline{f}=2 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.