Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 24

Answer

\[\frac{4}{3}\]

Work Step by Step

\[\begin{align} & \text{From the graph we can define the region }R\text{ in the quadrant I} \\ & \text{as:} \\ & R=\left\{ \left( x,y \right):-\frac{1}{2}x+1\le y\le -x+2,\text{ }0\le x\le 2\text{ } \right\} \\ & \text{Then, by symmetry of }z={{x}^{2}} \\ & \iint_{R}{f\left( x,y \right)}=2\int_{0}^{2}{\int_{-\frac{1}{2}x+1}^{-x+2}{{{x}^{2}}}dydx} \\ & \text{Integrating} \\ & =2\int_{0}^{2}{\left[ {{x}^{2}}y \right]_{1-\frac{1}{2}x}^{2-x}dx} \\ & =2\int_{0}^{2}{\left[ {{x}^{2}}\left( 2-x \right)-{{x}^{2}}\left( 1-\frac{1}{2}x \right) \right]dx} \\ & =2\int_{0}^{2}{\left[ 2{{x}^{2}}-{{x}^{3}}-{{x}^{2}}+\frac{1}{2}{{x}^{3}} \right]dx} \\ & =2\int_{0}^{2}{\left( {{x}^{2}}-\frac{1}{2}{{x}^{3}} \right)dx} \\ & =2\left[ \frac{1}{3}{{x}^{3}}-\frac{1}{8}{{x}^{4}} \right]_{0}^{2} \\ & =2\left[ \frac{1}{3}{{\left( 2 \right)}^{3}}-\frac{1}{8}{{\left( 2 \right)}^{4}} \right]-2\left[ \frac{1}{3}{{\left( 0 \right)}^{3}}-\frac{1}{8}{{\left( 0 \right)}^{4}} \right] \\ & =\frac{4}{3} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.