Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1135: 3

Answer

$$\frac{{{e^2}}}{2} - \frac{7}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^2 {\left( {y{e^x} - x - y} \right)} dxdy} \cr & \int_0^1 {\left[ {\int_0^2 {\left( {y{e^x} - x - y} \right)} dx} \right]dy} \cr & {\text{Evaluate inner integral }}\int_0^2 {\left( {y{e^x} - x - y} \right)} dx \cr & {\text{Integrate with respect to }}x \cr & \int_0^2 {\left( {y{e^x} - x - y} \right)} dx = \left[ {y{e^x} - \frac{{{x^2}}}{2} - xy} \right]_{x = 0}^{x = 2} \cr & = \left[ {{e^2}y - \frac{{{{\left( 2 \right)}^2}}}{2} - \left( 2 \right)y} \right] - \left[ {{e^0}y - \frac{{{{\left( 0 \right)}^2}}}{2} - \left( 0 \right)y} \right] \cr & = {e^2}y - 2y - 2 - y \cr & = {e^2}y - 3y - 2 \cr & {\text{Therefore}}{\text{,}} \cr & \int_0^1 {\int_0^2 {\left( {y{e^x} - x - y} \right)} dxdy} = \int_0^1 {\left( {{e^2}y - 3y - 2} \right)} dy \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {\frac{{{e^2}{y^2}}}{2} - \frac{3}{2}{y^2} - 2y} \right]_0^1 \cr & = \left[ {\frac{{{e^2}{{\left( 1 \right)}^2}}}{2} - \frac{3}{2}{{\left( 1 \right)}^2} - 2\left( 1 \right)} \right] - \left[ {\frac{{{e^2}{{\left( 0 \right)}^2}}}{2} - \frac{3}{2}{{\left( 0 \right)}^2} - 2\left( 0 \right)} \right] \cr & {\text{Simplifying}} \cr & = \frac{{{e^2}}}{2} - \frac{3}{2} - 2 \cr & = \frac{{{e^2}}}{2} - \frac{7}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.