Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 9

Answer

$\displaystyle 2^x [\frac{2-x}{\ln 2}+\frac{1}{(\ln 2)^2}]+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int(2-x)2^x \ dx=\displaystyle (2-x)\frac{2^x}{\ln 2}-\int \frac{2^x}{\ln 2}(-1) \ dx$ or, $=\displaystyle (2-x)\frac{2^x}{\ln 2}+\dfrac{1}{\ln 2}\int 2^x \ dx$ or, $=\displaystyle (2-x)\frac{2^x}{\ln 2}+ \frac{2^x}{(\ln 2)^2}+C$ or, $=\displaystyle 2^x [\frac{2-x}{\ln 2}+\frac{1}{(\ln 2)^2}]+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.