Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 16

Answer

$$\frac{{{{\left( {x - 1} \right)}^9}}}{9} + \frac{{{{\left( {x - 1} \right)}^8}}}{4} + \frac{{{{\left( {x - 1} \right)}^7}}}{7} + C$$

Work Step by Step

$$\eqalign{ & \int {{x^2}{{\left( {x - 1} \right)}^6}} dx \cr & {\text{Integrate by substitution method }}\left( {{\text{See note 1 in the book}}} \right) \cr & {\text{ }}u = x - 1{\text{ }} \Rightarrow {\text{ }}x = u + 1{\text{ }} \Rightarrow {\text{ }}dx = du \cr & {\text{Substituting}} \cr & \int {{x^2}{{\left( {x - 1} \right)}^6}} dx = \int {{{\left( {u + 1} \right)}^2}{u^6}} du \cr & {\text{Expanding}} \cr & \int {\left( {{u^2} + 2u + 1} \right)} {u^6}du \cr & \int {\left( {{u^8} + 2{u^7} + {u^6}} \right)} du \cr & {\text{Integrate use the power rule }}\int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}} + C} \cr & \int {\left( {{u^8} + 2{u^7} + {u^6}} \right)} du = \frac{{{u^9}}}{9} + \frac{{{u^8}}}{4} + \frac{{{u^7}}}{7} + C \cr & {\text{Write in terms of }}x,{\text{ }}u = x - 1 \cr & \frac{{{{\left( {x - 1} \right)}^9}}}{9} + \frac{{{{\left( {x - 1} \right)}^8}}}{4} + \frac{{{{\left( {x - 1} \right)}^7}}}{7} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.