Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 32

Answer

$$\frac{{4{{\left( {3x - 2} \right)}^{3/2}}}}{{27}} + \frac{{14{{\left( {3x - 2} \right)}^{1/2}}}}{9} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{2x + 1}}{{\sqrt {3x - 2} }}} dx \cr & {\text{Integrate by substitution method }}\left( {{\text{See note 1 in the book}}} \right) \cr & {\text{ }}u = 3x - 2,{\text{ }}x = \frac{{u + 2}}{3},{\text{ }}dx = \frac{1}{3}du \cr & {\text{Substituting}} \cr & \int {\frac{{2x + 1}}{{\sqrt {3x - 2} }}dx} = \int {\frac{{2\left( {\frac{{u + 2}}{3}} \right) + 1}}{{\sqrt u }}\left( {\frac{1}{3}} \right)} du \cr & \int {\frac{{\left( {2u/3 + 4/3 + 1} \right)}}{{{u^{1/2}}}}\left( {\frac{1}{3}} \right)} du \cr & \int {\frac{{\left( {2u/3 + 7/3} \right)}}{{{u^{1/2}}}}\left( {\frac{1}{3}} \right)} du \cr & \frac{1}{9}\int {\frac{{2u + 7}}{{{u^{1/2}}}}du} \cr & \frac{1}{9}\int {\left( {\frac{{2u}}{{{u^{1/2}}}} + \frac{7}{{{u^{1/2}}}}} \right)du} \cr & \frac{1}{9}\int {\left( {2{u^{1/2}} + 7{u^{ - 1/2}}} \right)du} \cr & {\text{Integrate use the power rule }}\int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}} + C} \cr & \frac{1}{9}\left[ {\frac{{2{u^{3/2}}}}{{3/2}} + \frac{{7{u^{1/2}}}}{{1/2}}} \right] + C \cr & \frac{1}{9}\left[ {\frac{{4{u^{3/2}}}}{3} + 14{u^{1/2}}} \right] + C \cr & \frac{{4{u^{3/2}}}}{{27}} + \frac{{14}}{9}{u^{1/2}} + C \cr & {\text{Write in terms of }}x,{\text{ }}u = 3x - 2 \cr & \frac{{4{{\left( {3x - 2} \right)}^{3/2}}}}{{27}} + \frac{{14{{\left( {3x - 2} \right)}^{1/2}}}}{9} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.