Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 30

Answer

$${e^{{x^2} + x}} - \frac{{{x^2}{e^{2x + 1}}}}{2} + \frac{x}{2}{e^{2x + 1}} - \frac{1}{4}{e^{2x + 1}} + C$$

Work Step by Step

$$\eqalign{ & \int {\left[ {\left( {2x + 1} \right){e^{{x^2} + x}} - {x^2}{e^{2x + 1}}} \right]} dx \cr & {\text{Distribute}} \cr & \int {\left( {2x + 1} \right){e^{{x^2} + x}}} dx - \int {{x^2}{e^{2x + 1}}} dx{\text{ }}\left( {\bf{1}} \right) \cr & {\text{*The first integral can be solved by substitution}} \cr & {\text{*The second integral can be solved by parts}} \cr & \to {\text{ }}\int {\left( {2x + 1} \right){e^{{x^2} + x}}} dx \cr & {\text{ }}u = {x^2} + x,{\text{ }}du = \left( {2x + 1} \right)dx \cr & \int {\left( {2x + 1} \right){e^{{x^2} + x}}} dx = \int {{e^u}} du = {e^u} + C = {e^{{x^2} + x}} + C \cr & \cr & \to \int {{x^2}{e^{2x + 1}}} dx \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx \cr & dv = {e^{2x + 1}}dx,{\text{ }}v = \frac{1}{2}{e^{2x + 1}} \cr & \int u dv = uv - \int v du \cr & \int {{x^2}{e^{2x + 1}}} dx = {x^2}\left( {\frac{1}{2}{e^{2x + 1}}} \right) - \int {\left( {\frac{1}{2}{e^{2x + 1}}} \right)} \left( {2x} \right)dx \cr & \int {{x^2}{e^{2x + 1}}} dx = \frac{{{x^2}{e^{2x + 1}}}}{2} - \int {x{e^{2x + 1}}} dx \cr & {\text{Integrate by parts }}\int {x{e^{2x + 1}}} dx{\text{,}} \cr & {\text{Let }}u = x,{\text{ }}du = dx \cr & dv = {e^{2x + 1}}dx,{\text{ }}v = \frac{1}{2}{e^{2x + 1}} \cr & {\text{ }}\int {x{e^{2x + 1}}} dx{\text{,}} = \left( x \right)\left( {\frac{1}{2}{e^{2x + 1}}} \right) - \int {\frac{1}{2}{e^{2x + 1}}dx} \cr & {\text{ }}\int {x{e^{2x + 1}}} dx{\text{,}} = \frac{1}{2}x{e^{2x + 1}} - \frac{1}{4}{e^{2x + 1}} + C \cr & {\text{Then,}} \cr & \int {{x^2}{e^{2x + 1}}} dx = \frac{{{x^2}{e^{2x + 1}}}}{2} - \frac{1}{2}x{e^{2x + 1}} + \frac{1}{4}{e^{2x + 1}} + C \cr & {\text{Substituting both results into }}\left( {\bf{1}} \right) \cr & \int {\left( {2x + 1} \right){e^{{x^2} + x}}} dx - \int {{x^2}{e^{2x + 1}}} dx{\text{ }}\left( {\bf{1}} \right) \cr & = {e^{{x^2} + x}} - \frac{{{x^2}{e^{2x + 1}}}}{2} + \frac{x}{2}{e^{2x + 1}} - \frac{1}{4}{e^{2x + 1}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.