Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 17

Answer

$-\dfrac{1}{(x-2)}-\dfrac{1}{(x-2)^2} +C$

Work Step by Step

We will solve the given integral by using u-substitution method. Let us consider that $u=x-2 \implies dx=du$ $\displaystyle \int \dfrac{x}{(x-2)^3} \ dx=\int \displaystyle \dfrac{u+2}{u^3} \ du$ or, $=\int \displaystyle (u^{-2}+2u^{-3}) \ du$ or, $= \dfrac{u^{-1}}{-1}+\dfrac{2u^{-2}}{-2} +C$ Now, we will use back substitution $u=x-2$ Therefore, we have: $\displaystyle \int \dfrac{x}{(x-2)^3} \ dx=-\dfrac{1}{(x-2)}-\dfrac{1}{(x-2)^2} +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.