Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 38

Answer

$3.634$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ Here, $u=\ln (3x)$ and $dv=x^{2} \ dx \implies v=\dfrac{x^3}{3}$ $\displaystyle \int_{1}^2 x \ln (3x) x^2 \ dx= \ln (3x) (\dfrac{x^3}{3}) -\int_1^2 (\dfrac{x^3}{3}) (\dfrac{1}{x}) \ dx$ or, $= [(\dfrac{x^3}{3}) \ln (3x)- \dfrac{1}{3} \int x^2 \ dx$ or, $=[(\dfrac{x^3}{3}) \ln (3x) - \dfrac{x^3}{9}]_1^2$ or, $=[(\dfrac{2^3}{3}) \ln (6) - \dfrac{2^3}{9}]-[(\dfrac{1^3}{3}) \ln (3) - \dfrac{1^3}{9}]$ or, $\approx 3.634$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.