Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 41

Answer

$$1$$

Work Step by Step

The area is given by $A=\int_0^{10} xe^{-x} \ dx$ We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ Here, $u=x$ and $dv=e^{-x} dx \implies v=-e^{-x}$ $\displaystyle \int_0^{10} xe^{-x} \ dx=x(-e^{-x})-\int_0^{10} (-e^{-x}) \ dx$ or, $=[-x e^{-x} -e^{-x}]_0^{10}$ or, $=[-10 e^{-10} -e^{-10}]-[0 - e^{0}]$ or, $=-11 e^{-10} +1$ Therefore, the required area is: $Area \approx 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.