Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 48

Answer

$$3x\left| {x + 4} \right| - \frac{3}{2}\left( {x + 4} \right)\left| {x + 4} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {3x\frac{{\left| {x + 4} \right|}}{{x + 4}}} dx \cr & {\text{Integrate by parts }} \cr & {\text{Let }}u = 3x,{\text{ }}du = 3dx \cr & dv = \frac{{\left| {x + 4} \right|}}{{x + 4}}dx,{\text{ }}v = \int {\frac{{\left| {x + 4} \right|}}{{x + 4}}} dx \cr & {\text{By the given table of integrals }} \cr & v = \int {\frac{{\left| {x + 4} \right|}}{{x + 4}}} dx = \left| {x + 4} \right| \cr & {\text{Using the formula of integration by parts}} \cr & \int u dv = uv - \int v du \cr & \int {3x\frac{{\left| {x + 4} \right|}}{{x + 4}}} dx = 3x\left| {x + 4} \right| - \int {\left| {x + 4} \right|\left( 3 \right)} dx \cr & = 3x\left| {x + 4} \right| - 3\int {\left| {x + 4} \right|} dx \cr & {\text{By the given table of integrals we solve }}\int {\left| {x - 4} \right|} dx \cr & = 3x\left| {x + 4} \right| - 3\left( {\frac{1}{2}\left( {x + 4} \right)\left| {x + 4} \right|} \right) + C \cr & = 3x\left| {x + 4} \right| - \frac{3}{2}\left( {x + 4} \right)\left| {x + 4} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.