Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 40

Answer

$\dfrac{\ln(2)}{2}-\dfrac{5}{18}+\ln (2)$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ Here, $u=\ln (x+1)$ and $dv=x^{2} dx \implies v=\dfrac{x^3}{3}$ $\displaystyle \int_{0}^1 x^2 \ln (x+1) \ dx= \ln (x+1) \dfrac{x^3}{3}-\int_0^1 (\dfrac{x^3}{3}) (\dfrac{1}{x+1})$ or, $=[\dfrac{x^2}{2} \ln (x+1) -\dfrac{x^3}{9}+\dfrac{x^2}{6}-\dfrac{x}{3}+\ln|x+1|]_0^1$ or, $=\dfrac{1^2}{2} \ln (1+1) -\dfrac{1^3}{9}+\dfrac{1^2}{6}-\dfrac{1}{3}+\ln|1+1|]-[\dfrac{0^2}{2} \ln (0+1) -\dfrac{0^3}{9}+\dfrac{0^2}{6}-\dfrac{0}{3}+\ln|0+1|]$ or, $=\dfrac{\ln(2)}{2}-\dfrac{1}{9}+\dfrac{1}{6}-\dfrac{1}{3}+\ln 2$ or, $=\dfrac{\ln(2)}{2}-\dfrac{5}{18}+\ln (2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.