Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 12

Answer

$\displaystyle (1-x^2)\frac{2^{-x}}{\ln 2}+\frac{2^{1-x}x}{(\ln 2)^2}-\frac{2^{1-x}}{(\ln 2)^3}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int(1-x^2)2^{-x} \ dx=\displaystyle (1-x^2)(\frac{-2^{-x}}{\ln 2})- \int (-\frac{2^{-x}}{\ln 2})(-2x) \ dx$ or, $=\displaystyle (1-x^2)\frac{2^{-x}}{\ln 2}+\frac{2^{1-x}}{(\ln 2)^2}+\dfrac{2}{(\ln 2)^2}\int 2^{-x} \ dx$ or, $=\displaystyle (1-x^2)\frac{2^{-x}}{\ln 2}+\frac{2^{1-x}x}{(\ln 2)^2}-\frac{2^{1-x}}{(\ln 2)^3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.