Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 39

Answer

$\dfrac{1}{4}-\dfrac{\ln (2)}{2}$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ Here, $u=\ln (x+1)$ and $dv=x \ dx \implies v=\dfrac{x^2}{2}$ $\displaystyle \int_{0}^1 x \ln (x+1) \ dx= \ln (x+1) (\dfrac{x^2}{2}) -\int_0^1 (\dfrac{x^2}{2}) (\dfrac{1}{x+1}) \ dx$ or, $= (\dfrac{x^2}{2}) \ln (x+1)- \dfrac{1}{2} \int_0^1 \dfrac{x^2}{x+1} \ dx$ or, $=[(\dfrac{x^2}{2}) \ln (x+1) - \dfrac{x^2}{4}+\dfrac{x}{2}-\ln |x+1|]_0^1$ or, $=[(\dfrac{1^2}{2}) \ln (1+1) - \dfrac{1^2}{4}+\dfrac{1}{2}-\ln |1+1|]-[(\dfrac{0^2}{2}) \ln (0+1) - \dfrac{0^2}{4}+\dfrac{0}{2}-\ln |0+1|]$ or, $=\dfrac{1}{4}-\dfrac{\ln (2)}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.