Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 10

Answer

$\displaystyle 4^x [\frac{3x-2}{\ln 4}+\frac{3}{(\ln 4)^2}]+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int(3x-2)4^x \ dx=\displaystyle (3x-2)\frac{4^x}{\ln 4}+ \frac{3}{\ln 4} \int 4^x \ dx$ or, $=\displaystyle (3x-2)\frac{4^x}{\ln 4}+ \frac{3}{\ln 4} (\dfrac{ 4^x}{\ln 4})+C$ or, $=\displaystyle 4^x [\frac{3x-2}{\ln 4}+\frac{3}{(\ln 4)^2}]+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.