Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 20

Answer

$\displaystyle \frac{x^3}{3} \ln x -\frac{x^3}{9}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int x^2 \ln x \ dx=\ln x (\dfrac{x^3}{3})- \int (\frac{x^3}{3} ) \dfrac{1}{x} \ dx$ or, $=\displaystyle \frac{x^3}{3} \ln x -\frac{1}{3} \int x^2 \ dx$ or, $=\displaystyle \frac{x^3}{3} \ln x -\frac{1}{3} (\dfrac{x^3}{3})+C$ or, $=\displaystyle \frac{x^3}{3} \ln x -\frac{x^3}{9}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.