Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 13

Answer

$- (x^2-x) e^{-x} - (2x-1) e^{-x} +2 e^{-x}+C $

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int\dfrac{x^2-x}{e^{x}} \ dx=\int (x^2-x) e^{-x} \ dx $ or, $=- (x^2-x) e^{-x} +\int (2x-1) e^{-x} \ dx $ or, $=- (x^2-x) e^{-x} - (2x-1) e^{-x} +2 \int e^{-x} \ dx $ or, $=- (x^2-x) e^{-x} - (2x-1) e^{-x} +2 e^{-x}+C $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.