Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 14

Answer

$-(2x+1) (\dfrac{e^{-3x}}{3}) -\dfrac{2}{9} e^{-3x}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int\dfrac{2x+1}{e^{3x}} \ dx=\int (2x+1) (e^{-3x}) \ dx $ or, $=(2x+1) (-\dfrac{e^{-3x}}{3})-\int (-\dfrac{e^{-3x}}{3})(2) \ dx$ or, $=-(2x+1) (\dfrac{e^{-3x}}{3}) +\dfrac{2}{3} \int e^{-3x} \ dx $ or, $=-(2x+1) (\dfrac{e^{-3x}}{3}) -\dfrac{2}{9} e^{-3x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.