Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 27

Answer

$\dfrac{x e^{2x}}{2}-\dfrac{1}{4} e^{2x} -\dfrac{4e^{3x}}{3}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int (x e^{2x}-4e^{3x}) \ dx=\dfrac{x e^{2x}}{2}-\dfrac{1}{2} \int e^{2x} \ dx-\int 4e^{3x} \ dx$ or, $=\dfrac{x e^{2x}}{2}-\dfrac{1}{4} -\int 4e^{3x} \ dx+C$ or, $=\dfrac{x e^{2x}}{2}-\dfrac{1}{4} e^{2x} -4 \times (\dfrac{e^{3x}}{3})+C$ or, $=\dfrac{x e^{2x}}{2}-\dfrac{1}{4} e^{2x} -\dfrac{4e^{3x}}{3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.