Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 28

Answer

$-x e^{-x} -e^{-x}+2 e^{x+1}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int (x e^{-x}+2e^{-x+1}) \ dx=\int xe^{-x} dx +2 \int e^{-x+1} \ dx$ or, $=x (-e^{-x})-\int (-e^{-x}) \ dx+2 \int e^{-x+1} \ dx$ or, $=-x e^{-x} -e^{-x}+2 \int e^{-x+1} \ dx+C$ or, $=-x e^{-x} -e^{-x}+2 e^{x+1}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.